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It is a proven fact that the invention of fire and then wheel changed the life of human being to a great extent. 

In this series, the first use of turbomachines had been the use of water wheels between third and first century 

B.C., for irrigation, grinding flour and the like. First real modern turbomachine as a power source did not 

appear until the industrial revolution in the late 1880s. Further developments in the field had tremendously 

contributed to the growth of civilization and well being of mankind. It was quite a challenging and thrilling 

task to write a textbook on this classic subject area that has diverse applications in daily life from power 

generation, water transportation, and use of fans to aviation.

This textbook is written to provide a single treatise on turbomachines to cater to the needs of the undergradu-

ate and first year postgraduate students of engineering discipline. The literature on the subject is voluminous 

and scattered. Most of the books available on the subject are on a specific topic such as pumps, compressors, 

gas turbines, hydraulic turbines, etc. The ones that attempt to unify all topics require the students to acquire 

adequate background from several other subjects as a prerequisite. This text is written with the intention to 

provide handy material on the subject with useful concepts and motivate students to move to higher levels in 

the turbomachines field. Towards the end, care has been taken in this text to provide simple basics of subjects 

like thermodynamics and fluid mechanics wherever required and not depend too much on a prior knowledge. 

This book of ten chapters has two objectives. The first is to provide the fundamental treatment to a general 

turbomachine applying basic principles of fluid dynamics and thermodynamics of flow through passages 

and over surfaces with one-dimensional treatment using control volume approach. The second objective is 

to apply these principles to the specific machines of either constant or variable density and to find major 

performance parameters and characteristics. Attempts have been made to obtain a balance between understand-

ing of fundamentals and acquiring knowledge of the practical aspects for each of the machines. However, in 

order to achieve the balance, focus has not deviated from fundamental understanding and developing logical 

reasoning in readers. In the words of Leonardo da Vinci, “He who loves practice, without theory is like the 

sailor who boards ship without a rudder and compass and never knows where he may cast.”

Content presentation supports outcome based learning and module-based approach. Chapter 1 on funda-

mentals along with any of the remaining chapters constitutes a separate module. Main emphasis in Chapter 

2 is on the model testing of turbomachines based on affinity laws of dimensional analysis. For the readers, 

the module containing Chapters 1 and 2 is a necessity before proceeding to any of the subsequent chapters. 

Chapters 3 to 6 are for incompressible flow turbomachines. Contents on cavitation are presented separately 

in Chapter 5, considering its practical importance. Chapters 7 to 9 are for compressible flow machines. 

Chapter 10 on Fluid Systems is included to meet the course requirements of some of the universities. 

Preface
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Underlying principles, performance parameters and characteristics are the common features of all the ma-

chines presented from Chapters 3 to 10. Solved examples are given to develop the understanding of the 

students using analytical means and/or basic engineering practices as they progress through each section of 

a chapter. A Unique feature of this text is the brainstorming multiple choice questions for the preparation 

of competitive examinations like GATE, ESE, PSUs etc.

Additionally, the book is accompanied with supplementary learning material, accessible on McGraw Hill 

Education Online Learning Centre through the following link:

http://www.mhhe.com/dubey/turbomachinery

It contains the following learning resources:

For Students 
 d Chapter Summary Flow Charts
 d Test bank (contains questions from University papers as well)

For Instructors:
 d Solutions Manual
 d Lecture PPTs

We would welcome and appreciate criticism and suggestions by readers for further improvement of the 

book, which will be gratefully acknowledged.

 Maneesh Dubey

 BVSSS Prasad

 Archana Nema
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F E A T U R E S  O F

1. Module-based approach

Chapters are written to form modules when clubbed with the first chapter. For example, Chapters 

1 & 3 form a module on Hydraulic Turbines; similarly, Chapters 1 & 6 form a module on Fans & Blowers. 

Hence, it offers utility to all including students, teachers and professionals!

2. Outcome-based Learning

All chapters begin with Learning 

O b j e c t i ve s  b a s e d  o n  B l o o m’s 

Taxonomy, highlighting the learning 

outcome of the content covered.

Learning Objectives

After reading this chapter, you will be able to:

1.1 Introduction

A turbomachine is a roto-dynamic device that exchanges energy between a continuous flowing fluid and 

rotating blades. The turbomachine that extracts energy from the fluid to produce shaft power is called a 

turbine. The turbomachine that delivers energy to the fluid at the expense of shaft work is termed as a pump, 

fan, blower or compressor, depending on the fluid used and the magnitude of the change in pressure of the 

fluid. Pumps usually have water or other liquids as their working media. Air and other gases are working 

media for the fans/blowers/compressors. Turbomachinery is a generic name for all these machines.

Turbomachines are essential devices in the modern world. Turbines are used in all significant electricity 

production plants in steam power plants, gas turbine power plants, hydro-electric power plants and wind 

turbines. Pumps are used to transport water in homes, municipal water systems and in several industries. 

Pumps and turbines are also essential in the transportation of fuel oil and gas pipe networks. Gas turbine 

engines are used to power all large passenger aircrafts either in the form of turbo-prop or turbo-fan engines. 

They also power all helicopter engines through a gearbox.

1
Fundamentals of 

Turbomachines

LO 1 Know different types of turbomachines

LO 2 Learn the generalized transport theorem for 

control volume

LO 3 Develop the Euler equation for turbomachine 

and connect the same to transport theorem

LO 4 Describe the method of drawing velocity 

triangles and calculate energy transfer and 

degree of reaction in turbomachines

LO 5 Estimate forces exerted by impact of jets 

on stationary and moving curved plates

LO 6 Understand lift and drag for a 

turbomachinery blade

LO 7 Understand slip stream theory and its 

application to wind turbine, etc

LO 8 Describe internal and external losses in 

turbomachines

LO 9 Know free and forced vortex flows and their 

application in turbomachinery

Learning Objectives

After reading this chapter, you will be able to:

3.1 Introduction

A  hydraulic turbine converts stored energy in the form of either potential or kinetic energy of water into shaft 

work. Historically, hydraulic turbines of today are derived from the water wheels of the middle ages used 

for flour mills (to grind wheat) and ore-crushing. One such water wheel can still be seen at Aurangabad, 

which is, at least, four hundred years old. Modern turbines have undergone many technological advances 

in diverse areas like fluid mechanics, metallurgy, and mechanical engineering.

3.2 Schematic Layout of a  Hydroelectric Power Plant

Schematic layout of a hydroelectric power plant is shown in Figure 3.1. It consists of:

 (i) A dam constructed across a river for storage of water.

 (ii)  Penstocks are pipes of large diameters used to carry water under pressure from the storage reservoir 

to the turbines. Steel or reinforced concrete is used for manufacturing of penstocks.

 (iii) Turbines having different blades fitted on rotor.

3 Hydraulic Turbines

LO 1 Understand the principle of operation of 

various hydraulic turbines

LO 2 Understand the nature of energy transfer in 

hydraulic turbines

LO 3 Study the classifications and principal 

parts of hydraulic turbines

LO 4 Learn and derive expressions for the power 

developed and efficiencies of various 

hydraulic turbines

LO 5 Understand the necessity of a draft tube in 

a reaction turbine and derive its efficiency

LO 6 Study the performance characteristics of 

hydraulic turbines

Learning Objectives

After reading this chapter, you will be able to:

6.1 Introduction

Roto-dynamic  fans and  blowers are the machines which 

utilize mechanical energy to increase the total pressure 

of air or gas at certain volume flow rate. Most of these 

devices (Figure 6.1) are driven by electric motor, thus con-

suming electric work at their shaft. Other drives such as 

I.C. engines, water turbines, may also be used in specific 

applications. In this chapter, we will discuss how these 

devices are classified, the terminology used to character-

ise their performance, important design parameters, their 

losses and their noise.

The devices may be  ducted or  un-ducted. They are 

termed as fans when the inlet and outlet pressures are  

close to the ambient and kinetic energy of the fluid or 

air is of main interest.

6 Fans and Blowers

LO 1 Outline the differences between fan, blower 

and compressor and learn the various 

classification of fans

LO 2 Determine the specific work for axial 

and centrifugal fans using Euler’s 

turbomachinery equation

LO 3 Illustrate the velocity triangles and 

compute stage parameters for an axial 

fan stage with different guide vanes 

arrangements and for a centrifugal fan for 

various blade geometries

LO 4 Summarise the performance characteristics 

of axial and centrifugal fans

LO 5 Explain losses, different fan and system 

arrangements, fan laws and fan noise

Figure 6.1 Ducted Fan

Learning Objectives

After reading this chapter, you will be able to:

1.1 Introduction

A turbomachine is a roto-dynamic device that exchanges energy between a continuous flowing fluid and 

rotating blades. The turbomachine that extracts energy from the fluid to produce shaft power is called a 

turbine. The turbomachine that delivers energy to the fluid at the expense of shaft work is termed as a pump, 

fan, blower or compressor, depending on the fluid used and the magnitude of the change in pressure of the 

fluid. Pumps usually have water or other liquids as their working media. Air and other gases are working 

media for the fans/blowers/compressors. Turbomachinery is a generic name for all these machines.

Turbomachines are essential devices in the modern world. Turbines are used in all significant electricity 

LO 1 Know different types of turbomachines

LO 2 Learn the generalized transport theorem for 

control volume

LO 3 Develop the Euler equation for turbomachine 

and connect the same to transport theorem

LO 4 Describe the method of drawing velocity 

triangles and calculate energy transfer and 

degree of reaction in turbomachines

LO 5 Estimate forces exerted by impact of jets 

on stationary and moving curved plates

LO 6 Understand lift and drag for a 

turbomachinery blade

LO 7 Understand slip stream theory and its 

application to wind turbine, etc

LO 8 Describe internal and external losses in 

turbomachines

LO 9 Know free and forced vortex flows and their 

application in turbomachinery



T H E  B O O K

3. Coverage

One-stop solution to all curricula requirements – dedicated 

chapter on Fluid Systems, which is generally a part of ‘Fluid 

Mechanics’ titles. Also, the text covers topics with industrial 

applications such as Cavitation, Pumps and Turbines 

Designs, Installation of Turbines etc.

4. Solved Examples

Ample number of examples with 

solutions presented as per relevant 

topics.

Learning Objectives

After reading this chapter, you will be able to:

10.1 Introduction

Power transmission takes place mainly in three ways, viz. mechanical, electrical and fluid. When transmis-

sion takes place through shafts, gears, chains, belts or pulleys, it is mechanical power transmission. Cables, 

transformers etc. are used in electrical power transmission systems. Fluids i.e. liquids or gases restricted in 

a specific space are used for transmission of power. This system of power transfer using incompressible or 

compressible fluids is called a  fluid power transmission system. A fluid system is a network of connected 

components in which either force or power are transmitted using the fluid. Fluid systems store fluid energy 

and then transmit when required or increase the energy of the fluid mostly the pressure energy several times 

and then transmit as and when required. A prime mover is required in a fluid system to run a pump which 

increases the pressure of the fluid. The pressurized fluid then passes through pipes and hoses to operate an 

actuator to perform the assigned task. A fluid system by virtue of the kind of fluid used is either pneumatic 

(air/gas) or hydraulic (liquid). Extensive applications of fluid systems are found in many industries, mili-

tary operations, health and recreation to name a few. For example, pneumatic drill used by dentists and the 

10 Fluid Systems

LO1 Know the significance, classifications and 

applications of fluid systems

LO2 Explain the role of turbomachinery in fluid 

systems

LO3 Outline the differences between positive 

displacement machines and turbomachinery 

and comparative study between them on 

some common basis

LO4 Explain the basic principle, working, 

performance parameters of hydrostatic 

fluid systems

 LO5 Describe the basic principle of hydrodynamic 

transmission systems

LO6 Discuss the working, performance 

parameters and characteristics of fluid 

coupling and torque converter

LO7 Summarize the need and various methods of 

governing of hydraulic and steam turbines

(b) Maximum Height of Installation

Maximum permissible draft height at the plant

 Z2 = (Z2)max – M (3)

 Z2 = 1.82 – 0.5

 Z2 = 1.32 m (4)

 EXAMPLE 5.2 A turbine with sc = 0.1 is to be installed at a location where the barometric pressure 

is 1 bar, the summer temperature 40°C, and the net head available is 50 m. Calculate the maximum 

permissible height of the turbine rotor above the tailrace.

Solution

Given: sc = 0.1, pa = 1 bar, Ta = 40°C, H = 50 m

From steam table, at 40°C, pv = 0.07375 bar. s must at least be equal to sc so as to avoid cavitation. The 

maximum permissible height of the turbine above the tailrace, i.e. the maximum draft head for a turbine 

setting can be obtained by,

 (Z2)max = pa /rg – pv /rg – sc H (1)

 
5 5

2 max

1 10 0.07375 10
( ) 0.1 50

1000 9.81 1000 9.81
Z

¥ ¥
= - - ¥

¥ ¥
 (Z2)max = 4.44 m (2)

 EXAMPLE 5.3 A Francis turbine running at 120 rpm produces 11.76 MW while operating under a 

head of 25 m. The atmospheric pressure is 10 m of water at the site of installation of the turbine and the 

vapour pressure is 0.20 m of water. Calculate the maximum height of straight draft tube for the turbine.

Solution

Given: N = 120 rpm, P = 11.76 MW = 11760 kW, H = 25 m, Ha = 10 m, Hv = 0.20

We know that specific speed of a turbine is given by,

 
5/4s

N P
N

H
=  (1)

 
5/4

120 11760
232.8

25
s sN N

¥
= fi =  (2)

Critical Thoma’s cavitation parameter for a Francis runner is given by,

 

2

2

0.044
100

232.8
0.044

100
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c

c
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s

s
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(3)

 EXAMPLE 5.2 A turbine with scc = 0.1 is to be installed at a location where the barometric pressure 

is 1 bar, the summer temperature 40°C, and the net head available is 50 m. Calculate the maximum 

permissible height of the turbine rotor above the tailrace.

 EXAMPLE 5.3 A Francis turbine running at 120 rpm produces 11.76 MW while operating under a 

head of 25 m. The atmospheric pressure is 10 m of water at the site of installation of the turbine and the 

vapour pressure is 0.20 m of water. Calculate the maximum height of straight draft tube for the turbine.

5.2 Cavitation in Turbines

Cavitation starts when the pressure drops too low a value. Therefore, occurrence of cavitation is more 

susceptible at points where the velocity or the elevation is high, particularly at those points where high 

velocity and high elevation are combined.

5.2.1 Cavitation in Pelton Turbine

Cavitation is not a matter of serious concern in Pelton turbines since it does not impose limits to operation. We 

know that Pelton turbines work under atmospheric pressure. The pressures in the system are either atmospheric 

as in the case of the wheel or above atmospheric as in closed conduits like the nozzle and manifold. Hence, 

cavitation due to negative ambient pressure does not arise. However, the velocities involved are very high 

and possibilities of local vacuum pressures and consequently, cavitation is possible even in Pelton turbines.

5.2.2 Cavitation in Reaction Turbines

As already discussed, the outlet of the runner, i.e. entry of 

the draft tube, is usually more susceptible to cavitation. Ap-

plication of Bernoulli’s Eq. for the flow between inlet of the 

draft tube and the final discharge into the tailrace (where the 

pressure is atmospheric), as shown in Figure 5.1, assuming 

the velocity at the outlet of the draft tube to be negligibly 

small, results in,

 
2

2 2
2

2

a
f

pp C
Z h

g g gr r
+ + = +  (5.1)

where p2 and C2 represents the static pressure and velocity 

at the outlet of the runner or inlet of the draft tube and Z2 

is the height of the turbine runner outlet above the tailrace. Head loss due to friction in the draft tube is 

denoted by hf. Equation (5.1) incidentally shows a further reason why the velocity at the outlet of the run-

ner, C2, should be as small as possible. It is obvious that larger the value of C2, the smaller is the value of 

p2, therefore, the chances of cavitation susceptibility is more.

An important parameter in the context of cavitation is the available suction head defined as the total head 

3
2

Tailrace

Draft tube

Turbine
Z

2

Figure 5.1  Application of Bernouli’s Eq. 
between Turbine Exit and Tailrace

draft tube and the final discharge into the tailrace (where the 

pressure is atmospheric), as shown in Figure 5.1, assuming 

the velocity at the outlet of the draft tube to be negligibly 

2 2p C2 2p C2 2

g g g

 represents the static pressure and velocity 

at the outlet of the runner or inlet of the draft tube and 

is the height of the turbine runner outlet above the tailrace. Head loss due to friction in the draft tube is 

. Equation (5.1) incidentally shows a further reason why the velocity at the outlet of the run

, should be as small as possible. It is obvious that larger the value of 

, therefore, the chances of cavitation susceptibility is more.

9.13 Design of Multistage Turbines

The design of a steam turbine involves a judicious combination of theory with the results of experience, 

governed to a great extent by cost. The following outlined method of design is only illustrative of the theories 

discussed before. The following are specified to the designer: initial steam conditions, exhaust pressure, and 

the capacity in MW or kW. The turbine requires many stages with increase in diameter from the inlet to the 

exit end. All wheels turn at the same speed (rpm), but Cb, C1, ktb, a, b, g, leakage efficiency, disc friction 

and windage loss may all vary from stage to stage. The condition line, which is the logical starting point, 

can only be approximated until all the stage efficiencies are known.

The calculation for the casing arrangement of a multistage impulse turbine is made according to the Section 

9.10. The first stage is most often a two-row Curtis stage. In order to increase the height of the nozzles, the 

stage is usually given a partial admission. In large condensing steam turbines, where the specific volume 

at the end of expansion in the turbine becomes very large, long blades of special design are selected. The 

design of multistage turbines is usually started with initial design considerations of first, second and last 

stages, while the intermediate stages are designed later.

design of multistage turbines is usually started with initial design considerations of first, second and last 

stages, while the intermediate stages are designed later.

p

(c) Height of Installation

It is always advisable to install the turbines as high above the tailrace as possible. This saves cost of excava-

tion for the draft tube. Care should be taken to ensure that cavitation does not occur.
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Summary

 ✦ In a general pumping system, the head between the sump level (from where the liquid is lifted) to the 

tank level (to where the liquid is lifted) is known as the static head, Hst. Various heads and expressions 

denoting the heads for a general pumping system are summarized in the following table. 

Variable Expression

Static head, Hst hs + hd : suction head + delivery head 

Suction head, hs Head developed in the suction line, the difference in the fluid energy between the 

sump level and the centerline of the pump.

Delivery head, hd Head developed in the delivery line, the difference in the fluid energy between 

the tank level (to where the liquid is lifted) and the center line of the pump. 

Manometric head Total head developed by the pump, the difference in the fluid energy between the 

outlet and inlet of the pump.

2 2
2 2 1 1

2 1 2 1
2 2

Losses in the pumping section 

m

m st

p C p C
H H H Z Z

g g g g

H H

r r

Ê ˆ Ê ˆ
= - = + + - + +Á ˜ Á ˜Ë ¯ Ë ¯

= +Â
This is also referred simply as ‘pump head’ H.

Euler head or Theoretical 

head, He
He = 

1

g
(Cw2Cb2 – Cw1Cb1) ; gHe is specific work and m gHe is the the theoretical 

power of the pump either for a centrifugal pump, or for an axial pump, the inlet 

whirl component is generally negligible. In that case,

2 2

1
e w bH C C

g
=

 ✦ Theoretical fluid power developed by pump can be divided into three components 

 

2 22 2 2 2
2 12 1 1 2

2 2 2

b br r
e

C CC C C C
gHm m

Ê ˆ-- -
= + +Á ˜Ë ¯ 

 where, the first term is the specific kinetic energy difference of fluid (between outlet and inlet). The 

second term is the specific relative energy of fluid (between outlet and inlet). The third term is the 

centrifugal energy of fluid since 2 2 2 bC r w=  (between outlet and inlet).

review QueSt ionS

 8.1 State the assumptions made in the analysis of ideal Joule-Brayton (JB) cycle for gas turbine.

 8.2 Draw the schematic p – v and T – s diagrams of simple Joule-Brayton cycle of gas turbine and briefly 

explain its working.

 8.3 Derive an expression for specific work output and efficiency of simple gas turbine cycle in terms of 

pressure ratio and temperature ratio.

 8.4 Derive an expression for optimum pressure ratio for maximum work output from an ideal Joule-

Brayton cycle in terms of ratio of maximum cycle temperature to minimum cycle temperature and 

ratio of specific heats.

 8.5 Show that the specific work output is maximum when the pressure ratio is such that the exit temperature 

of compressor is equal to the exit temperature of turbine.

 8.6 How the actual Joule-Brayton cycle differs from the ideal Joule-Brayton cycle of a gas turbine?

 8.7 Prove that the specific work output of actual Joule-Brayton gas turbine cycle is given by,

 

( 1)/ (( 1)/ ))
1 3 1{[ ( / )(1 1/ ) ( )]}r r

p t c

c

c T T T r r
w

g gh h

h

- -- -
=

ProblemS

 8.1 An ideal gas turbine cycle is working between the temperature limits of 350 K and 2000 K. The 

pressure ratio of the cycle is 1.3. The ambient pressure is 1 bar and air flow rate through the plant is 

14400 m3/min. Calculate the cycle efficiency. Take cp = 1.005 kJ/kg – K.

 [Ans: h = 7.23%, h = f(r), h π f(q)]

 8.2 The work ratio of an ideal Joule-Brayton cycle is 0.56 and efficiency is 35%. The temperature of the 

air at compressor inlet is 290 K. Determine (a) the pressure ratio, and (b) temperature drop across the 

turbine. [Ans: (a) r = 4.52, (b) (DT)t = 356 K or °C]

 8.3 An ideal Joule-Brayton gas turbine cycle is working between the temperature limits of 300 K 

and 1050 K. Determine (a) the pressure ratio of the cycle if its efficiency is equivalent to Carnot 

cycle efficiency, (b) optimum pressure ratio for maximum work output, (c) the cycle efficiency 

corresponding to maximum work, and (d) maximum specific work output.

 [Ans: (a) (r)Carnot eff =80.2, (b) ropt = 8.94 (c) hmax work = 46.52%, (d) w = 228.64 kJ/kg]

 8.4 An ideal Joule Brayton gas turbine cycle having pressure ratio of 7.5 is working between the 

temperature limits of 27°C and 727°C. The pressure at the inlet of compressor is 1 bar and the flow 

rate of air is 8.5 m3/s. Calculate (a) the power developed, (b) cycle efficiency, and (c) the change in 

the work ouput and cycle efficiency in percentage, if perfect intercooling is used.

 [Ans: (a) P = 1895.5 kW, (b) h = 43.8%, (c) Change in power = +18.6%, 

 Change in Efficiency = –8.68%]
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 1. Consider the following statements regarding gas turbine cycle:

 1. Regeneration increases thermal efficiency.

 2. Reheating decreases thermal efficiency.

 3. Cycle efficiency increases when maximum temperature of the 

cycle is increased.

  Which of these statements are correct?

 (a) 1, 2 and 3 (b) 2 and 3

 (c) 1 and 2 (d) 1 and 3

 2. Figure 8.23 shows four plots, A, B, C and D, of thermal efficiency 

versus pressure ratio. The curve which represents a gas turbine plant 

using Brayton cycle without regeneration is the one labelled

 (a) A (b) B

 (c) C (d) D

  Direction: Each of the next three questions consists of two statements, one labeled as Assertion (A) 

and the other as Reason (R). You are to examine these two statements carefully and select the correct 

answers to the questions using the following codes:

 (a) Both A and R are individually true and R is the correct explaination of A

 (b) Both A and R are individually true but R is not the correct explaination of A

 (c) A is true but R is false

 (d) A is false but R is true

 3. Assertion (A): The thermal efficiency of gas turbine plants is higher as compared to diesel plants.

  Reason (R): The mechanical efficiency of gas turbines is higher as compared to diesel engines.

 4. Assertion (A): Gas turbines use very high air fuel ratio.

  Reason (R): The allowable maximum temperature at the turbine inlet is limited by available material 

considerations.

 5. Assertion (A): In a gas turbine, reheating is preferred over regeneration to yield a higher thermal 

efficiency.

  Reason (R): The thermal efficiency given by the ratio of the difference of work done by turbine 

(Wt) and the work required by compressor (Wc) to the heat added (Qs) is improved by increasing Wt 

keeping Wc and Qs constant in reheating, whereas in regeneration, Qs is reduced keeping Wt and Wc 

constant.

 6. The optimum intermediate pressure, pt, for a gas turbine plant operating between pressure limits p1 

and p2 with perfect intercooling between the two stages of compression with identical isentropic 

efficiency is given by

 (a) pi = p2 – p1 (b) 1 2

1
( )

2
ip p p= +  (c) 1 2=ip p p  (d) 2 2

1 2= +ip p p

A
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Symbols

t Time/tip/thickness N Extensive property/speed

m 
.

Mass flow rate r Density/velocity ratio

V Volume C Velocity/Coefficient

A Cross sectional/flow area h Efficiency/Intensive property

r Radius/pressure ratio B Width

F Force or Thrust p Pressure/number of poles/pitch

g Acceleration due to gravity Z Datum head, i.e. height from a reference

T Temperature/Torque R Reaction

e Specific energy E Total energy

Q 
.

Heat transfer rate W 
.

Work transfer rate

s Entropy u Specific internal energy

v Specific volume h Specific enthalpy

f Friction factor/frequency c Specific heat

g Ratio of specific heats/specific weight M Mach number/moment of momentum/

margin

w Specific work P Power

H Head I Rothalpy

a Absolute flow angle b Relative flow angle

w Angular velocity z Number of blades 

s Slip factor/Thoma’s cavitation parameter R Degree of reaction

l Length D Diameter

m Number of primary dimensions/jet ratio m Viscosity

Q Discharge or volume flow rate a Velocity of sound/cross sectional area of jet

R Characteristic gas constant k Blade friction coefficient

j Flow coefficient Y Stage pressure coefficient/blade loading 

coefficient or temperature drop coefficient
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q Heat transfer per kg e Heat exchanger effectiveness
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W Weight/work L Length of stroke/length

n Number of stages/number of strokes S Slip

Nsh Non dimensional specific speed

Subscripts

0 Stagnation, no load

1 Inlet 2 Outlet

t Tangential/tip/turbine h Hub

s Isentropic/specific/stage/static/suction/

shaft/system/slip

CV Control volume

f Flow/fan/frictional B Body

S Surface/Supplied i Internal

e Euler/external/exit o outer/overall

w Whirl/water/wasted b Blade or vane

r Relative/ratio/runaway rw Relative whirl

th Theoretical/ideal a Axial/actual/atmospheric/air

P Power H Head

Q Flow or capacity or discharge c Critical/compressor/casing/circulation/

coupling

v Volumetric/vapour mano Manometric

h Hydraulic m Mechanical/model/manometric

o Overall tt Total-to-total

ts Total to static ss Static-to-static

p Polytropic/pump/prototype/pressure 

end/constant pressure

u Unit g Gross

n Nozzle sn Nozzle setting

3 Draft tube exit fr Friction in runner

sy Synchronous v Velocity

ln Losses in the nozzle lb Losses in the blades or buckets

d Delivery/draft/drive/discharge/diffuser/

diffusion

le Losses at exit

max Maximum min Minimum

D Diagram or blading/Drag in Entry/inlet
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L Lift q Change from normal discharge

l Losses/leakage l First

II Second opt Optimum

R Rejected fb Fixed blades

mb Moving blades co Carry over

nb Nozzle and Blade tn Nozzle thickness

tb Blade thickness T Torque convertor/torque

Abbreviations

NPSHA Net positive suction head available NPSHR Net positive suction head required

WG Water gauge Re Reynolds number

RF Reheat factor





Learning Objectives

After reading this chapter, you will be able to:

1.1 Introduction

A turbomachine is a roto-dynamic device that exchanges energy between a continuous flowing fluid and 

rotating blades. The turbomachine that extracts energy from the fluid to produce shaft power is called a 

turbine. The turbomachine that delivers energy to the fluid at the expense of shaft work is termed as a pump, 

fan, blower or compressor, depending on the fluid used and the magnitude of the change in pressure of the 

fluid. Pumps usually have water or other liquids as their working media. Air and other gases are working 

media for the fans/blowers/compressors. Turbomachinery is a generic name for all these machines.

Turbomachines are essential devices in the modern world. Turbines are used in all significant electricity 

production plants in steam power plants, gas turbine power plants, hydro-electric power plants and wind 

turbines. Pumps are used to transport water in homes, municipal water systems and in several industries. 

Pumps and turbines are also essential in the transportation of fuel oil and gas pipe networks. Gas turbine 

engines are used to power all large passenger aircrafts either in the form of turbo-prop or turbo-fan engines. 

They also power all helicopter engines through a gearbox.

1
Fundamentals of 

Turbomachines

LO 1 Know different types of turbomachines

LO 2 Learn the generalized transport theorem for 

control volume

LO 3 Develop the Euler equation for turbomachine 

and connect the same to transport theorem

LO 4 Describe the method of drawing velocity 

triangles and calculate energy transfer and 

degree of reaction in turbomachines

LO 5 Estimate forces exerted by impact of jets 

on stationary and moving curved plates

LO 6 Understand lift and drag for a 

turbomachinery blade

LO 7 Understand slip stream theory and its 

application to wind turbine, etc

LO 8 Describe internal and external losses in 

turbomachines

LO 9 Know free and forced vortex flows and their 

application in turbomachinery


